Einstein's theory of gravity and the problem of missing mass.

نویسندگان

  • Pedro G Ferreira
  • Glenn D Starkman
چکیده

The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of higher derivative modifications of Einstein - aether theory

A time-like unit vector field is used to generalize Einstein's gravity. The resulting theory, called the Einstein-aether theory, consists of a minimal coupling between an aether field and gravity. Inspired by the Bopp-Podolsky electrodynamics, which is well-known for removing the singularity at the point charge, we generalized the Einstein-aether theory by adding such a higher order self-intera...

متن کامل

Black Holes and Massive Elementary Particles in Resummed Quantum Gravity †

Einstein's general theory of relativity poses many problems to the quantum theory of point particle fields. Among them is the fate of a massive point particle. Since its rest mass exists entirely within its Schwarzschild radius, in the classical solutions of Einstein's theory, the respective system should be a black hole. We address this issue using exact results in a new approach to quantum gr...

متن کامل

Field Energy in Classical Gravity

The problem of negative total energy of certain mass systems in classical gravity and its connection with the existence of space-time singularities is brie y summarized. Some attempts to solve this problem are discussed, pointing out especially the possibility that rest masses of a gravitating systems could depend on the strength of the gravitational eld. The results are confronted with some ex...

متن کامل

Massive Elementary Particles and Black Holes †

An outstanding problem posed by Einstein's general theory of relativity to the quantum theory of point particle fields is the fate of a massive point particle; for, in the classical solutions of Einstein's theory, such a system should be a black hole. We use exact results in a new approach to quantum gravity to show that this conclusion is obviated by quantum loop effects. Phenomenological impl...

متن کامل

Local stability criterion for self-gravitating disks in modified gravity

We study local stability of self-gravitating fluid and stellar disk in the context of modified gravity theories which predict a Yukawa-like term in the gravitational potential of a point mass. We investigate the effect of such a Yukawa-like term on the dynamics of self-gravitating disks. More specifically, we investigate the consequences of the presence of this term for the local stability of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 326 5954  شماره 

صفحات  -

تاریخ انتشار 2009